Skip to contents

[Experimental]

A copy from VCA::VCAinference in VCA package

Usage

VCAinference(...)

Arguments

...

Arguments passed on to VCA::VCAinference

obj

(object) of class 'VCA' or, alternatively, a list of 'VCA' objects, where all other argument can be specified as vectors, where the i-th vector element applies to the i-th element of 'obj' (see examples)

alpha

(numeric) value specifying the significance level for \(100*(1-alpha)\)% confidence intervals.

total.claim

(numeric) value specifying the claim-value for the Chi-Squared test for the total variance (SD or CV, see claim.type).

error.claim

(numeric) value specifying the claim-value for the Chi-Squared test for the error variance (SD or CV, see claim.type).

claim.type

(character) one of "VC", "SD", "CV" specifying how claim-values have to be interpreted:
"VC" (Default) = claim-value(s) specified in terms of variance(s),
"SD" = claim-values specified in terms of standard deviations (SD),
"CV" = claim-values specified in terms of coefficient(s) of variation (CV) and are specified as percentages.
If set to "SD" or "CV", claim-values will be converted to variances before applying the Chi-Squared test (see examples).

VarVC

(logical) TRUE = if element "Matrices" exists (see anovaVCA), the covariance matrix of the estimated VCs will be computed (see vcovVC, which is used in CIs for intermediate VCs if 'method.ci="sas"'. Note, this might take very long for larger datasets, since there are many matrix operations involved. FALSE (Default) = computing covariance matrix of VCs is omitted, as well as CIs for intermediate VCs.

excludeNeg

(logical) TRUE = confidence intervals of negative variance estimates will not be reported.
FALSE = confidence intervals for all VCs will be reported including those with negative VCs.
See the details section for a thorough explanation.

constrainCI

(logical) TRUE = CI-limits for all variance components are constrained to be >= 0.
FALSE = unconstrained CIs with potentially negative CI-limits will be reported.
which will preserve the original width of CIs. See the details section for a thorough explanation.

ci.method

(character) string or abbreviation specifying which approach to use for computing confidence intervals of variance components (VC). "sas" (default) uses Chi-Squared based CIs for total and error and normal approximation for all other VCs (Wald-limits, option "NOBOUND" in SAS PROC MIXED); "satterthwaite" will approximate DFs for each VC using the Satterthwaite approach (see SattDF for models fitted by ANOVA) and all Cis are based on the Chi-Squared distribution. This approach is conservative but avoids negative values for the lower bounds.

quiet

(logical) TRUE = will suppress any warning, which will be issued otherwise

Value

object of VCAinference contains a series of statistics.

Examples

data(glucose)
fit <- anovaVCA(value ~ day / run, glucose)
VCAinference(fit)
#> 
#> 
#> 
#> Inference from (V)ariance (C)omponent (A)nalysis
#> ------------------------------------------------
#> 
#> > VCA Result:
#> -------------
#> 
#>   Name    DF      SS    MS      VC      %Total  SD     CV[%] 
#> 1 total   64.7773               12.9336 100     3.5963 1.4727
#> 2 day     19      415.8 21.8842 1.9586  15.1432 1.3995 0.5731
#> 3 day:run 20      281   14.05   3.075   23.7754 1.7536 0.7181
#> 4 error   40      316   7.9     7.9     61.0814 2.8107 1.151 
#> 
#> Mean: 244.2 (N = 80) 
#> 
#> Experimental Design: balanced  |  Method: ANOVA
#> 
#> 
#> > VC:
#> -----
#>         Estimate CI LCL  CI UCL One-Sided LCL One-Sided UCL
#> total    12.9336 9.4224 18.8614        9.9071       17.7278
#> day       1.9586                                           
#> day:run   3.0750                                           
#> error     7.9000 5.3251 12.9333        5.6673       11.9203
#> 
#> > SD:
#> -----
#>         Estimate CI LCL CI UCL One-Sided LCL One-Sided UCL
#> total     3.5963 3.0696 4.3430        3.1476        4.2104
#> day       1.3995                                          
#> day:run   1.7536                                          
#> error     2.8107 2.3076 3.5963        2.3806        3.4526
#> 
#> > CV[%]:
#> --------
#>         Estimate CI LCL CI UCL One-Sided LCL One-Sided UCL
#> total     1.4727  1.257 1.7785        1.2889        1.7242
#> day       0.5731                                          
#> day:run   0.7181                                          
#> error     1.1510  0.945 1.4727        0.9749        1.4138
#> 
#> 
#> 95% Confidence Level  
#> SAS PROC MIXED method used for computing CIs 
#>