Skip to contents

[Experimental]

Detect the potential outliers from the absolute and relative differences in BAsummary object with 4E and ESD method.

Usage

getOutlier(object, ...)

# S4 method for class 'BAsummary'
getOutlier(
  object,
  method = c("ESD", "4E"),
  difference = c("abs", "rel"),
  alpha = 0.05,
  h = 5
)

Arguments

object

(BAsummary)
input from blandAltman function to generate the Bland-Altman analysis result that contains the absolute and relative differences.

...

not used.

method

(string)
string specifying which method to use. Default is ESD.

difference

(string)
string specifying which difference type to use for ESD method. Default is abs that means absolute difference, and rel is relative difference.

alpha

(numeric)
type-I-risk. Only used when the method is defined as ESD.

h

(integer)
the positive integer indicating the number of suspected outliers. Only used when the method is defined as ESD.

Value

A list contains the statistics results (stat), outliers' ord id (ord), sample id (sid), matrix with outliers (outmat) and matrix without outliers (rmmat).

Note

Bland-Altman analysis is used as the input data regardless of the 4E and ESD method because it's necessary to determine the absolute and relative differences beforehand. For the 4E method, both of the absolute and relative differences are required to be define, and the bias exceeds the 4 fold of the absolute and relative differences. However for the ESD method, only one of them is necessary (the latter is more recommended), and the bias needs to meet the ESD test.

Examples

data("platelet")
# Using `blandAltman` function with default arguments
ba <- blandAltman(x = platelet$Comparative, y = platelet$Candidate)
getOutlier(ba, method = "ESD", difference = "rel")
#> $stat
#>   i       Mean        SD          x Obs     ESDi   Lambda Outlier
#> 1 1 0.06356753 0.1447540  0.6666667   1 4.166372 3.445148    TRUE
#> 2 2 0.05849947 0.1342496  0.5783972   4 3.872621 3.442394    TRUE
#> 3 3 0.05409356 0.1258857  0.5321101   2 3.797226 3.439611    TRUE
#> 4 4 0.05000794 0.1183096 -0.4117647  10 3.903086 3.436800    TRUE
#> 5 5 0.05398874 0.1106738 -0.3132530  14 3.318236 3.433961   FALSE
#> 6 6 0.05718215 0.1056542 -0.2566372  23 2.970250 3.431092   FALSE
#> 
#> $ord
#> [1]  1  4  2 10
#> 
#> $sid
#> [1]  1  4  2 10
#> 
#> $outmat
#>   sid    x    y
#> 1   1  1.5  3.0
#> 2   2  4.0  6.9
#> 3   4 10.2 18.5
#> 4  10 16.4 10.8
#> 
#> $rmmat
#>     sid      x      y
#> 1     3    9.2    8.0
#> 2     5   11.2    9.0
#> 3     6   12.4   13.0
#> 4     7   14.8   19.7
#> 5     8   14.8   16.0
#> 6     9   15.9   21.9
#> 7    11   17.6   22.6
#> 8    12   18.1   15.9
#> 9    13   18.1   20.0
#> 10   14   19.2   14.0
#> 11   15   19.6   25.9
#> 12   16   19.9   21.8
#> 13   17   20.4   24.5
#> 14   18   21.2   29.2
#> 15   19   22.0   27.0
#> 16   20   22.2   24.0
#> 17   21   23.4   25.8
#> 18   22   25.2   22.0
#> 19   23   25.5   19.7
#> 20   24   25.6   33.4
#> 21   25   26.3   30.0
#> 22   26   26.4   28.9
#> 23   27   27.5   34.3
#> 24   28   28.2   34.3
#> 25   29   30.3   35.8
#> 26   30   31.4   37.8
#> 27   31   32.9   37.1
#> 28   32   33.9   40.3
#> 29   33   34.3   37.1
#> 30   34   35.3   40.0
#> 31   35   38.4   42.2
#> 32   36   39.2   49.3
#> 33   37   48.2   41.0
#> 34   38   49.0   55.0
#> 35   39   51.3   55.0
#> 36   40   52.2   64.6
#> 37   41   60.2   54.8
#> 38   42   61.5   64.6
#> 39   43   78.0   78.6
#> 40   44   80.6   91.4
#> 41   45   84.4   65.7
#> 42   46   85.3   97.2
#> 43   47   89.0  100.0
#> 44   48   92.6  103.2
#> 45   49   94.9   89.6
#> 46   50  108.6  123.4
#> 47   51  110.4  115.0
#> 48   52  115.6  124.4
#> 49   53  116.9  138.1
#> 50   54  122.7  139.2
#> 51   55  143.6  166.8
#> 52   56  146.1  143.7
#> 53   57  146.2  150.8
#> 54   58  154.5  178.5
#> 55   59  161.7  183.4
#> 56   60  167.7  176.1
#> 57   61  176.6  173.7
#> 58   62  179.7  180.4
#> 59   63  188.9  198.9
#> 60   64  189.0  199.4
#> 61   65  197.9  211.1
#> 62   66  201.7  220.1
#> 63   67  207.7  218.3
#> 64   68  209.2  223.4
#> 65   69  210.5  196.8
#> 66   70  210.9  223.8
#> 67   71  214.1  232.2
#> 68   72  218.6  237.1
#> 69   73  232.9  247.9
#> 70   74  235.0  227.0
#> 71   75  237.8  235.3
#> 72   76  246.1  283.0
#> 73   77  252.6  263.5
#> 74   78  254.9  283.5
#> 75   79  261.4  272.3
#> 76   80  262.4  256.6
#> 77   81  270.1  289.2
#> 78   82  271.3  265.7
#> 79   83  273.5  264.5
#> 80   84  274.2  262.2
#> 81   85  281.1  271.1
#> 82   86  297.0  311.7
#> 83   87  298.7  296.5
#> 84   88  326.7  310.2
#> 85   89  327.1  362.1
#> 86   90  329.6  368.5
#> 87   91  332.8  370.6
#> 88   92  337.4  379.5
#> 89   93  340.1  358.3
#> 90   94  364.8  390.6
#> 91   95  370.1  408.4
#> 92   96  390.6  371.0
#> 93   97  395.7  431.7
#> 94   98  419.3  438.7
#> 95   99  421.3  382.3
#> 96  100  426.3  441.8
#> 97  101  440.4  455.6
#> 98  102  443.4  465.8
#> 99  103  446.2  416.4
#> 100 104  462.7  480.3
#> 101 105  467.7  470.7
#> 102 106  507.4  496.7
#> 103 107  568.3  595.9
#> 104 108  599.6  611.0
#> 105 109  613.8  622.3
#> 106 110  633.5  641.3
#> 107 111  678.6  717.5
#> 108 112  687.6  714.9
#> 109 113  695.1  647.3
#> 110 114  701.0  725.6
#> 111 115  708.3  729.5
#> 112 116  735.6  754.5
#> 113 117  794.8  768.5
#> 114 118  937.0  901.6
#> 115 119 1031.9 1068.0
#> 116 120 1239.3 1279.0
#> 

# Using sample id as input
ba2 <- blandAltman(x = platelet$Comparative, y = platelet$Candidate, sid = platelet$Sample)
getOutlier(ba2, method = "ESD", difference = "rel")
#> $stat
#>   i       Mean        SD          x Obs     ESDi   Lambda Outlier
#> 1 1 0.06356753 0.1447540  0.6666667   1 4.166372 3.445148    TRUE
#> 2 2 0.05849947 0.1342496  0.5783972   4 3.872621 3.442394    TRUE
#> 3 3 0.05409356 0.1258857  0.5321101   2 3.797226 3.439611    TRUE
#> 4 4 0.05000794 0.1183096 -0.4117647  10 3.903086 3.436800    TRUE
#> 5 5 0.05398874 0.1106738 -0.3132530  14 3.318236 3.433961   FALSE
#> 6 6 0.05718215 0.1056542 -0.2566372  23 2.970250 3.431092   FALSE
#> 
#> $ord
#> [1]  1  4  2 10
#> 
#> $sid
#> [1] "ID1"  "ID4"  "ID2"  "ID10"
#> 
#> $outmat
#>    sid    x    y
#> 1  ID1  1.5    3
#> 2  ID2    4  6.9
#> 3  ID4 10.2 18.5
#> 4 ID10 16.4 10.8
#> 
#> $rmmat
#>       sid      x     y
#> 1     ID3    9.2     8
#> 2     ID5   11.2     9
#> 3     ID6   12.4    13
#> 4     ID7   14.8  19.7
#> 5     ID8   14.8    16
#> 6     ID9   15.9  21.9
#> 7    ID11   17.6  22.6
#> 8    ID12   18.1  15.9
#> 9    ID13   18.1    20
#> 10   ID14   19.2    14
#> 11   ID15   19.6  25.9
#> 12   ID16   19.9  21.8
#> 13   ID17   20.4  24.5
#> 14   ID18   21.2  29.2
#> 15   ID19     22    27
#> 16   ID20   22.2    24
#> 17   ID21   23.4  25.8
#> 18   ID22   25.2    22
#> 19   ID23   25.5  19.7
#> 20   ID24   25.6  33.4
#> 21   ID25   26.3    30
#> 22   ID26   26.4  28.9
#> 23   ID27   27.5  34.3
#> 24   ID28   28.2  34.3
#> 25   ID29   30.3  35.8
#> 26   ID30   31.4  37.8
#> 27   ID31   32.9  37.1
#> 28   ID32   33.9  40.3
#> 29   ID33   34.3  37.1
#> 30   ID34   35.3    40
#> 31   ID35   38.4  42.2
#> 32   ID36   39.2  49.3
#> 33   ID37   48.2    41
#> 34   ID38     49    55
#> 35   ID39   51.3    55
#> 36   ID40   52.2  64.6
#> 37   ID41   60.2  54.8
#> 38   ID42   61.5  64.6
#> 39   ID43     78  78.6
#> 40   ID44   80.6  91.4
#> 41   ID45   84.4  65.7
#> 42   ID46   85.3  97.2
#> 43   ID47     89   100
#> 44   ID48   92.6 103.2
#> 45   ID49   94.9  89.6
#> 46   ID50  108.6 123.4
#> 47   ID51  110.4   115
#> 48   ID52  115.6 124.4
#> 49   ID53  116.9 138.1
#> 50   ID54  122.7 139.2
#> 51   ID55  143.6 166.8
#> 52   ID56  146.1 143.7
#> 53   ID57  146.2 150.8
#> 54   ID58  154.5 178.5
#> 55   ID59  161.7 183.4
#> 56   ID60  167.7 176.1
#> 57   ID61  176.6 173.7
#> 58   ID62  179.7 180.4
#> 59   ID63  188.9 198.9
#> 60   ID64    189 199.4
#> 61   ID65  197.9 211.1
#> 62   ID66  201.7 220.1
#> 63   ID67  207.7 218.3
#> 64   ID68  209.2 223.4
#> 65   ID69  210.5 196.8
#> 66   ID70  210.9 223.8
#> 67   ID71  214.1 232.2
#> 68   ID72  218.6 237.1
#> 69   ID73  232.9 247.9
#> 70   ID74    235   227
#> 71   ID75  237.8 235.3
#> 72   ID76  246.1   283
#> 73   ID77  252.6 263.5
#> 74   ID78  254.9 283.5
#> 75   ID79  261.4 272.3
#> 76   ID80  262.4 256.6
#> 77   ID81  270.1 289.2
#> 78   ID82  271.3 265.7
#> 79   ID83  273.5 264.5
#> 80   ID84  274.2 262.2
#> 81   ID85  281.1 271.1
#> 82   ID86    297 311.7
#> 83   ID87  298.7 296.5
#> 84   ID88  326.7 310.2
#> 85   ID89  327.1 362.1
#> 86   ID90  329.6 368.5
#> 87   ID91  332.8 370.6
#> 88   ID92  337.4 379.5
#> 89   ID93  340.1 358.3
#> 90   ID94  364.8 390.6
#> 91   ID95  370.1 408.4
#> 92   ID96  390.6   371
#> 93   ID97  395.7 431.7
#> 94   ID98  419.3 438.7
#> 95   ID99  421.3 382.3
#> 96  ID100  426.3 441.8
#> 97  ID101  440.4 455.6
#> 98  ID102  443.4 465.8
#> 99  ID103  446.2 416.4
#> 100 ID104  462.7 480.3
#> 101 ID105  467.7 470.7
#> 102 ID106  507.4 496.7
#> 103 ID107  568.3 595.9
#> 104 ID108  599.6   611
#> 105 ID109  613.8 622.3
#> 106 ID110  633.5 641.3
#> 107 ID111  678.6 717.5
#> 108 ID112  687.6 714.9
#> 109 ID113  695.1 647.3
#> 110 ID114    701 725.6
#> 111 ID115  708.3 729.5
#> 112 ID116  735.6 754.5
#> 113 ID117  794.8 768.5
#> 114 ID118    937 901.6
#> 115 ID119 1031.9  1068
#> 116 ID120 1239.3  1279
#> 

# Using `blandAltman` function when the `tyep2` is 2 with `X vs. (Y-X)/X` difference
ba3 <- blandAltman(x = platelet$Comparative, y = platelet$Candidate, type2 = 4)
getOutlier(ba3, method = "ESD", difference = "rel")
#> $stat
#>   i       Mean        SD          x Obs     ESDi   Lambda Outlier
#> 1 1 0.07824269 0.1730707  1.0000000   1 5.325900 3.445148    TRUE
#> 2 2 0.07049683 0.1514810  0.8137255   4 4.906415 3.442394    TRUE
#> 3 3 0.06419828 0.1355778  0.7250000   2 4.873967 3.439611    TRUE
#> 4 4 0.05855040 0.1214221 -0.3414634  10 3.294407 3.436800   FALSE
#> 5 5 0.06199880 0.1160523 -0.2708333  14 2.867950 3.433961   FALSE
#> 6 6 0.06489299 0.1122769  0.3773585  18 2.782991 3.431092   FALSE
#> 
#> $ord
#> [1] 1 4 2
#> 
#> $sid
#> [1] 1 4 2
#> 
#> $outmat
#>   sid    x    y
#> 1   1  1.5  3.0
#> 2   2  4.0  6.9
#> 3   4 10.2 18.5
#> 
#> $rmmat
#>     sid      x      y
#> 1     3    9.2    8.0
#> 2     5   11.2    9.0
#> 3     6   12.4   13.0
#> 4     7   14.8   19.7
#> 5     8   14.8   16.0
#> 6     9   15.9   21.9
#> 7    10   16.4   10.8
#> 8    11   17.6   22.6
#> 9    12   18.1   15.9
#> 10   13   18.1   20.0
#> 11   14   19.2   14.0
#> 12   15   19.6   25.9
#> 13   16   19.9   21.8
#> 14   17   20.4   24.5
#> 15   18   21.2   29.2
#> 16   19   22.0   27.0
#> 17   20   22.2   24.0
#> 18   21   23.4   25.8
#> 19   22   25.2   22.0
#> 20   23   25.5   19.7
#> 21   24   25.6   33.4
#> 22   25   26.3   30.0
#> 23   26   26.4   28.9
#> 24   27   27.5   34.3
#> 25   28   28.2   34.3
#> 26   29   30.3   35.8
#> 27   30   31.4   37.8
#> 28   31   32.9   37.1
#> 29   32   33.9   40.3
#> 30   33   34.3   37.1
#> 31   34   35.3   40.0
#> 32   35   38.4   42.2
#> 33   36   39.2   49.3
#> 34   37   48.2   41.0
#> 35   38   49.0   55.0
#> 36   39   51.3   55.0
#> 37   40   52.2   64.6
#> 38   41   60.2   54.8
#> 39   42   61.5   64.6
#> 40   43   78.0   78.6
#> 41   44   80.6   91.4
#> 42   45   84.4   65.7
#> 43   46   85.3   97.2
#> 44   47   89.0  100.0
#> 45   48   92.6  103.2
#> 46   49   94.9   89.6
#> 47   50  108.6  123.4
#> 48   51  110.4  115.0
#> 49   52  115.6  124.4
#> 50   53  116.9  138.1
#> 51   54  122.7  139.2
#> 52   55  143.6  166.8
#> 53   56  146.1  143.7
#> 54   57  146.2  150.8
#> 55   58  154.5  178.5
#> 56   59  161.7  183.4
#> 57   60  167.7  176.1
#> 58   61  176.6  173.7
#> 59   62  179.7  180.4
#> 60   63  188.9  198.9
#> 61   64  189.0  199.4
#> 62   65  197.9  211.1
#> 63   66  201.7  220.1
#> 64   67  207.7  218.3
#> 65   68  209.2  223.4
#> 66   69  210.5  196.8
#> 67   70  210.9  223.8
#> 68   71  214.1  232.2
#> 69   72  218.6  237.1
#> 70   73  232.9  247.9
#> 71   74  235.0  227.0
#> 72   75  237.8  235.3
#> 73   76  246.1  283.0
#> 74   77  252.6  263.5
#> 75   78  254.9  283.5
#> 76   79  261.4  272.3
#> 77   80  262.4  256.6
#> 78   81  270.1  289.2
#> 79   82  271.3  265.7
#> 80   83  273.5  264.5
#> 81   84  274.2  262.2
#> 82   85  281.1  271.1
#> 83   86  297.0  311.7
#> 84   87  298.7  296.5
#> 85   88  326.7  310.2
#> 86   89  327.1  362.1
#> 87   90  329.6  368.5
#> 88   91  332.8  370.6
#> 89   92  337.4  379.5
#> 90   93  340.1  358.3
#> 91   94  364.8  390.6
#> 92   95  370.1  408.4
#> 93   96  390.6  371.0
#> 94   97  395.7  431.7
#> 95   98  419.3  438.7
#> 96   99  421.3  382.3
#> 97  100  426.3  441.8
#> 98  101  440.4  455.6
#> 99  102  443.4  465.8
#> 100 103  446.2  416.4
#> 101 104  462.7  480.3
#> 102 105  467.7  470.7
#> 103 106  507.4  496.7
#> 104 107  568.3  595.9
#> 105 108  599.6  611.0
#> 106 109  613.8  622.3
#> 107 110  633.5  641.3
#> 108 111  678.6  717.5
#> 109 112  687.6  714.9
#> 110 113  695.1  647.3
#> 111 114  701.0  725.6
#> 112 115  708.3  729.5
#> 113 116  735.6  754.5
#> 114 117  794.8  768.5
#> 115 118  937.0  901.6
#> 116 119 1031.9 1068.0
#> 117 120 1239.3 1279.0
#> 

# Using "4E" as the method input
ba4 <- blandAltman(x = platelet$Comparative, y = platelet$Candidate)
getOutlier(ba4, method = "4E")
#> No outlier is detected.