A copy from mcr::mcreg in mcr
package
Arguments
- ...
Arguments passed on to
mcr::mcreg
x
measurement values of reference method, or two column matrix.
y
measurement values of test method.
error.ratio
ratio between squared measurement errors of reference and test method, necessary for Deming regression (Default 1).
alpha
value specifying the 100(1-alpha)% confidence level for confidence intervals (Default is 0.05).
mref.name
name of reference method (Default "Method1").
mtest.name
name of test Method (Default "Method2").
sample.names
names of cases (Default "S##").
method.reg
regression method. It is possible to choose between five regression methods:
"LinReg"
- ordinary least square regression."WLinReg"
- weighted ordinary least square regression."Deming"
- Deming regression."WDeming"
- weighted Deming regression."TS"
- Theil-Sen regression."PBequi"
- equivariant Passing-Bablok regression."PaBa"
- Passing-Bablok regression."PaBaLarge"
- approximative Passing-Bablok regression for large datasets, operating onNBins
classes of constant slope angle which each slope is classified to instead of building the complete triangular matrix of all N*N/2 slopes.method.ci
method of confidence interval calculation. The function contains four basic methods for calculation of confidence intervals for regression coefficients.
"analytical"
- with parametric method."jackknife"
- with leave one out resampling."bootstrap"
- with ordinary non-parametric bootstrap resampling."nested bootstrap"
- with ordinary non-parametric bootstrap resampling.method.bootstrap.ci
bootstrap based confidence interval estimation method.
nsamples
number of bootstrap samples.
nnested
number of nested bootstrap samples.
rng.seed
integer number that sets the random number generator seed for bootstrap sampling. If set to NULL currently in the R session used RNG setting will be used.
rng.kind
type of random number generator for bootstrap sampling. Only used when rng.seed is specified, see set.seed for details.
iter.max
maximum number of iterations for weighted Deming iterative algorithm.
threshold
numerical tolerance for weighted Deming iterative algorithm convergence.
na.rm
remove measurement pairs that contain missing values (Default is FALSE).
NBins
number of bins used when 'reg.method="PaBaLarge"' to classify each slope in one of 'NBins' bins covering the range of all slopes
slope.measure
angular measure of pairwise slopes used for exact PaBa regression (see below for details).
"radian"
- for data sets with even sample numbers median slope is calculated as average of two central slope angles."tangent"
- for data sets with even sample numbers median slope is calculated as average of two central slopes (tan(angle)).methodlarge
Boolean. This parameter applies only to regmethod="PBequi" and "TS". If TRUE, a quasilinear algorithm is used. If FALSE, a quadratic algorithm is used which is faster for less than several hundred data pairs.
Examples
data(platelet)
fit <- mcreg(
x = platelet$Comparative, y = platelet$Candidate,
method.reg = "Deming", method.ci = "jackknife"
)
#> Jackknife based calculation of standard error and confidence intervals according to Linnet's method.
printSummary(fit)
#>
#>
#> ------------------------------------------
#>
#> Reference method: Method1
#> Test method: Method2
#> Number of data points: 120
#>
#> ------------------------------------------
#>
#> The confidence intervals are calculated with jackknife (Linnet's) method.
#> Confidence level: 95%
#> Error ratio: 1
#>
#> ------------------------------------------
#>
#> DEMING REGRESSION FIT:
#>
#> EST SE LCI UCI
#> Intercept 4.335885 1.568968372 1.2289002 7.442869
#> Slope 1.012951 0.009308835 0.9945175 1.031386
#>
#>
#> ------------------------------------------
#>
#> JACKKNIFE SUMMARY
#>
#> EST Jack.Mean Bias Jack.SE
#> Intercept 4.335885 4.336377 4.918148e-04 1.568968372
#> Slope 1.012951 1.012950 -1.876312e-06 0.009308835
#> NULL
getCoefficients(fit)
#> EST SE LCI UCI
#> Intercept 4.335885 1.568968372 1.2289002 7.442869
#> Slope 1.012951 0.009308835 0.9945175 1.031386